p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.95D4, C25.37C22, C23.312C24, C24.562C23, C22.1282+ 1+4, C22⋊C4⋊33D4, C23.152(C2×D4), C2.18(D4⋊5D4), C23.10D4⋊9C2, C23.11D4⋊3C2, C2.9(C23⋊3D4), (C22×C4).48C23, C23.7Q8⋊33C2, C23.8Q8⋊28C2, C23.299(C4○D4), C23.34D4⋊19C2, C23.23D4⋊27C2, C22.73(C4⋊D4), (C23×C4).330C22, C22.192(C22×D4), C2.C42⋊20C22, (C22×D4).118C22, C22⋊1(C22.D4), C2.11(C22.45C24), (C2×C4⋊C4)⋊13C22, (C2×C4).306(C2×D4), C2.16(C2×C4⋊D4), (C2×C22≀C2).8C2, (C2×C22⋊C4)⋊14C22, (C22×C22⋊C4)⋊19C2, C22.191(C2×C4○D4), (C2×C22.D4)⋊5C2, C2.14(C2×C22.D4), SmallGroup(128,1144)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.95D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=c, ab=ba, eae-1=ac=ca, ad=da, faf-1=acd, ebe-1=fbf-1=bc=cb, bd=db, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 900 in 407 conjugacy classes, 116 normal (34 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C22≀C2, C22.D4, C23×C4, C23×C4, C22×D4, C25, C23.7Q8, C23.34D4, C23.8Q8, C23.23D4, C23.23D4, C23.10D4, C23.11D4, C22×C22⋊C4, C2×C22≀C2, C2×C22.D4, C24.95D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22.D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4⋊D4, C2×C22.D4, C23⋊3D4, D4⋊5D4, C22.45C24, C24.95D4
(2 24)(4 22)(5 20)(6 30)(7 18)(8 32)(9 29)(10 17)(11 31)(12 19)(14 26)(16 28)
(1 27)(2 16)(3 25)(4 14)(5 20)(6 30)(7 18)(8 32)(9 29)(10 17)(11 31)(12 19)(13 21)(15 23)(22 26)(24 28)
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 6 23 10)(2 5 24 9)(3 8 21 12)(4 7 22 11)(13 32 25 19)(14 31 26 18)(15 30 27 17)(16 29 28 20)
G:=sub<Sym(32)| (2,24)(4,22)(5,20)(6,30)(7,18)(8,32)(9,29)(10,17)(11,31)(12,19)(14,26)(16,28), (1,27)(2,16)(3,25)(4,14)(5,20)(6,30)(7,18)(8,32)(9,29)(10,17)(11,31)(12,19)(13,21)(15,23)(22,26)(24,28), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,23,10)(2,5,24,9)(3,8,21,12)(4,7,22,11)(13,32,25,19)(14,31,26,18)(15,30,27,17)(16,29,28,20)>;
G:=Group( (2,24)(4,22)(5,20)(6,30)(7,18)(8,32)(9,29)(10,17)(11,31)(12,19)(14,26)(16,28), (1,27)(2,16)(3,25)(4,14)(5,20)(6,30)(7,18)(8,32)(9,29)(10,17)(11,31)(12,19)(13,21)(15,23)(22,26)(24,28), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,6,23,10)(2,5,24,9)(3,8,21,12)(4,7,22,11)(13,32,25,19)(14,31,26,18)(15,30,27,17)(16,29,28,20) );
G=PermutationGroup([[(2,24),(4,22),(5,20),(6,30),(7,18),(8,32),(9,29),(10,17),(11,31),(12,19),(14,26),(16,28)], [(1,27),(2,16),(3,25),(4,14),(5,20),(6,30),(7,18),(8,32),(9,29),(10,17),(11,31),(12,19),(13,21),(15,23),(22,26),(24,28)], [(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,6,23,10),(2,5,24,9),(3,8,21,12),(4,7,22,11),(13,32,25,19),(14,31,26,18),(15,30,27,17),(16,29,28,20)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 2P | 2Q | 2R | 4A | ··· | 4P | 4Q | 4R | 4S |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | 4 | 8 | 4 | ··· | 4 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C24.95D4 | C23.7Q8 | C23.34D4 | C23.8Q8 | C23.23D4 | C23.10D4 | C23.11D4 | C22×C22⋊C4 | C2×C22≀C2 | C2×C22.D4 | C22⋊C4 | C24 | C23 | C22 |
# reps | 1 | 2 | 1 | 1 | 3 | 2 | 2 | 2 | 1 | 1 | 4 | 4 | 12 | 2 |
Matrix representation of C24.95D4 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 4 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,4,0,0,0,0,4,0,0,0,0,0,0,0,0,2,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C24.95D4 in GAP, Magma, Sage, TeX
C_2^4._{95}D_4
% in TeX
G:=Group("C2^4.95D4");
// GroupNames label
G:=SmallGroup(128,1144);
// by ID
G=gap.SmallGroup(128,1144);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,100,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f^-1=a*c*d,e*b*e^-1=f*b*f^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations